PELLET SOFTENING TREATMENT: IS IT RIGHT FOR YOUR COMMUNITY?

APRIL WINKLMANN
SIERRA MCCREARY
OUTLINE

• What is Pellet Softening?
• Background on MTJMA
• Pellet Softening at MTJMA
• Lessons Learned
• Questions
HISTORY

- Invented in 1938
- Used extensively in Europe for softening
- Existing installations range in size from 0.5 MGD to 95 MGD
- Manufacturers
 - WesTech – “Spiralater”
 - Tonka – “Spiraclear”
 - Roberts – “Spiractor”
 - Procorp – “Crystalactor”
 - Veolia – “Actina”

Source: DHV
THE BASICS

- Conical or cylindrical catalytic reactor for removal of calcium hardness
- Feed seed material (sand) to top of reactor
- Feed reagent (caustic or lime) to bottom of reactor
- Ca is removed by precipitation onto CaCO₃ crystals
- High loading rate, 35 gpm/sf allows for small footprint
THE BASICS

- Produces near anhydrous crystals (90% dry) “pellets”
- Pellets are removed from bottom of reactor
- Automated, continuous operation
- Mean crystal size is controlled by the frequency of seed removal and sand addition
ADVANTAGES

- Produces crystalline solid “pellet” with potential for beneficial use
- Precipitation occurs at a lower supersaturation, i.e. at lower pH and lower chemical dose, than conventional softening
- Small footprint
- No brine discharge, as compared with ion exchange
EXISTING SYSTEM

MTJMA – Manor Township Joint Municipal Authority
- Located Northeast of Pittsburgh, PA
- Water plant and water/sewer conveyance
- Serve 2,800 customers + consecutive system

Existing WTP, built in 1957
- 4 groundwater wells (total 1.3 mgd)
- Ion exchange
- No clearwell or high service pumps
- 2 booster pumps stations
- 3 water storage tanks
WHY BUILD A NEW FACILITY?

• Pennsylvania Department of Environmental Protection (PADEP) will not renew MTJMA’s permit which includes the discharge of brine into the Allegheny River

• New school

• Technologies considered
 • Membranes
 • Ion Exchange with dryer
 • Pellet Softening

• Goals
 • Simple
 • Automated
 • Intermittent Operations
REGULATORY ENVIRONMENT

- Conducted Pilot in 2012
- First Pellet Softening Plant in PA
- Equipment Procurement
PROCESS SCHEMATIC

WELL PUMP → REACTOR → FILTER → CLEARWELL

SAND & SODIUM HYDROXIDE
SULFURIC ACID
SODIUM HYPOCHLORITE

PUMPS
BACKWASH
HIGH SERVICE
REACTORS

• 2 pellet reactors with space for a future third
• Each pellet reactor sized at 0.7 mgd (486 gpm)
• Calcium removal
 • Influent -200 mg/L as CaCO₃
 • Effluent - 100 mg/L as CaCO₃
• Approximate diameter: 4 ft to 9 ft
• Approximate height: 14 ft to 28 ft
ANCILLARY EQUIPMENT

• Sand feed system
 • Slurry or pneumatic

• Chemical feed systems
 • Sodium hydroxide (caustic) or lime
 • Sulfuric acid or CO$_2$

• Pellet drainage & handling
ANCILLARY EQUIPMENT

• Polishing Filters
 • Open gravity
 • Enclosed (outdoor option)

• Filter backwash treatment & solids management
 • Sewer
 • Lagoon
 • Settling basin
LESSONS LEARNED

- **Design/Operational Considerations**
 - Start & stop operations – treat based on demand
 - Chemical feed
 - Upflow velocity – recirculation required?
 - Automation
 - Hydraulic profile
Building a world of difference.

Together

April Winklmann | Manager
724.763.2511 | awink.mtjma@windstream.net

Sierra McCreary | Project Engineer
614.473.0921 | mccrearysb@bv.com

One Water

BLACK & VEATCH
Building a world of difference.

www.onewaterohio.org
www.bv.com