Reducing Overflows using a Baffling Solution

OWEA - AWWA 2014
Technical Conference & Expo
August 28, 2014
Columbus, Ohio
Presented by:

• Steve Janosko, P.E.
 – Project Manager

• Tony Margevicius, P.E.
 – Vice President

Northeast Ohio Regional Sewer District

URS
NEORSD Responsibility

• Wastewater Collection and Treatment
 – Created in 1972 by court order
 – Governed by 7 trustees: 3 - Cleveland; 1 - Cuyahoga County; 3 - Suburban Council of Governments
 – Serving all or part of 62 communities, 355 square miles, > 1 million customers
 – 3 wastewater plants, 280 MGD on average
 – 280 miles of large interceptor sewers
 – 25-year, $3 Billion CSO Control Program started in 2011 (Project Clean Lake)
NEORSD Service Area and Plants

Easterly: 85/1,600 MGD
Westerly: 70/1,800 MGD
Southerly: 125/1,100 MGD
Combined and Separate Sewer Areas

Combined Sewer Area

Separate Sewer Area

Project Location
Existing Conditions at CSO-063

- Serves a 72 acre sewershed
- Activates 76 times in a typical year
- Discharges 29 MG of combined sewage To West Creek in a typical year (not including storm water discharged from I-480 corridor)
CSO-063 Control Project Goal

• Reduce the numbers of overflows to 1 overflow or fewer in a typical year by diverting flow from the BC-09 regulator SWO pipe to SWI via drop shaft.
Identifying the Challenge

• Per consent decree “Interbasin diversion of combined flows to the Southwest Interceptor via 4’ diameter pipe and new SWI drop structure”
 – Local System: Combined sewer system
 – SWI: Sanitary only system

• Drop flows from combined system to sanitary system without negatively affecting the downstream conditions
Consent Decree – Control Measure 24

• Consent Decree Milestones:
 – Construction NTP by end of 2013
 – Fully operational by end of 2014

• Control Measure 24 will be first of 28 control measures in consent decree to be operational

• Verify performance criteria is met through one year of post-construction monitoring of flow, level, and activation
Critical Project Issues

- Tight design/construction schedule
- Space limitations at BC-09 site
- Close proximity of residential properties
- Community impact during construction
- Connection to a live interceptor
- Constructing drop structure above unreinforced tunnel
Project Schedule

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>Design NTP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Basis of Design Report</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Design Complete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bid and Award</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Construction NTP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Substantial Completion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Design NTP: 01/18/13
- Pre-design: 4 MTHS
- Basis of Design Report: 5/13
- Design Complete: 09/13
- Construction NTP: 11/25/13
- Substantial Completion: 12/30/2014
- Final Completion: 5/29/15
Project Assumptions at Issuance of RFP

- Peak flow rate for 5-year, 6-hour storm
 - 55 MGD to new regulating structure
 - 25 MGD to SWI via drop structure; 30 MGD to CSO-063
- Southwest Interceptor has capacity to accept flow
- Drop shaft excavation largely in Cleveland (black) and Chagrin (gray) shales
Plan w/ Proposed Improvements

- Ground Elev. 762
- West 12th Street
- DWO – 12” VCP
- Sound Barrier
- Invert Elev. 642
- Regulating Structure
- Drop Structure
- SWO – 66” RCP
- SWI – 114” CIP
- I-176 South to I-480 West
Alt. Plan w/ Proposed Improvements
Alt. Plan w/ Proposed Improvements
Disadvantages of Drill Drop Alternative

• Air entrainment
• No energy dissipation
• Maintenance issues
• Lack of access
• Precision of drill drop construction
Proposed Alternative/Configuration

• Key Decisions:
 – What type of drop structure is best suited for this project?
Types of Drops within NEORSD System

• Vortex Drops – numerous; the standard for deep drops in NEORSD’s collection system in the 1980s.
• Baffle Drops – used more frequently in the last 25 years.
• Plunge Drops – numerous; the standard for shallow drops in NEORSD’s collection system
 • Southwest Interceptor – 10 vortex, 1 deep plunge, 2 shallow plunge (20’ & 70’)
 • 7A/7C/VARS – 1 vortex, 9 baffle
 • Mill Creek Tunnel – 6 vortex, 4 baffle, 1 deep plunge
 • Euclid Creek/Dugway Tunnel – 9 baffle
Proposed Alternative/Configuration

- Analyzed three types of drop structures
 - Vortex Drops
Proposed Alternative/Configuration

• Vortex Drops
 – Tangential Inlet forces the sewage to the wall of a vertical drop shaft
 – De-aeration chamber will remove excess air
 – Well suited for large flows
 – Typically more expensive than other types of drops
Proposed Alternative/Configuration

• Analyzed three types of drop structures
 – Baffle Drops
Proposed Alternative/Configuration

• Baffle Drop
 – Also known as a “Cascade Drop”
 – Flow cascades from baffle to baffle
 – Wet Side / Dry Side
 – Well suited for large flows
 – Typically less expensive than Vortex Drops
 – Typically shorter construction durations
Proposed Alternative/Configuration

- Analyzed three types of drop structures
 - Plunge Drops
Proposed Alternative/Configuration

- Plunge Drop
 - Most common type of drop
 - Flow free falls, does not dissipate energy or limit air entrainment
 - Well suited for smaller flow rates and shorter drops
 - Least expensive to construct
Drop Type Selection

• Baffle Drop Advantages
 – Less expensive than Vortex Drop
 – Limits air entrainment
 – Provides additional access point to SWI
 – Odor control has not been an issue with these drops within the NEORSD system
Schematic w/ Designed Improvements

BIG CREEK INTERCEPTOR (TO SOUTHERLY WWTC)

Reg. BC-02

Reg. BC-010

Reg. 4

DWO

NO. 1

24”

NO. 2

60” BRICK

NO. 3

24”

Reg. BC-09

SOUTH WEST INTERCEPTOR (TO SOUTHERLY WWTC)

New Reg.

SOUTHERLY WWTC

SOUTH POINT

CREEK

WEST

REG.

RCO

NO. 4

30”

54” BRICK

24”

54” BRICK

12” RCP

60” BRICK

24”

66” RCP

66” RCP

118” x 78” CMP

DROP SHAFT

114”

CIP

DWO & SWO

Schematic w/ Designed Improvements

Reg. BC-09

Reg. BC-02

Reg. BC-010

Reg. 4

DWO

NO. 1

24”

NO. 2

60” BRICK

NO. 3

24”

Reg. BC-09

SOUTH WEST INTERCEPTOR (TO SOUTHERLY WWTC)

New Reg.

SOUTHERLY WWTC

SOUTH POINT

CREEK

WEST

REG.

RCO

NO. 4

30”

54” BRICK

24”

54” BRICK

12” RCP

60” BRICK

24”

66” RCP

66” RCP

118” x 78” CMP

DROP SHAFT

114”

CIP

DWO & SWO
Plan w/ Designed Improvements

- WEST 12TH STREET
- WEST 13TH STREET
- VCP WEST 12TH STREET
- DWO – 12" VCP
- SWI – 114" CIP
- COMBINED SEWER – 66" RCP
- FLOW REGULATING STRUCTURE
- FLOW DROP STRUCTURE

I-176 SOUTH TO I-480 WEST
Diversion Structure Layout
Baffle Drop Sections
Baffle Drop in Action

• NEORSD ECT-4
Baffle Drop in Action

- Working installation – New Zealand
System Hydraulics

<table>
<thead>
<tr>
<th>Storm Event</th>
<th>Peak Flow to:</th>
<th>Peak Flow in MGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Year, 6-Hour Storm</td>
<td>SWI</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>SWO to CSO-063</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>DWO</td>
<td>1.9</td>
</tr>
<tr>
<td>Typical Storm 60*</td>
<td>SWI</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>SWO to CSO-063</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>DWO</td>
<td>1.7</td>
</tr>
<tr>
<td>Typical Storm 68</td>
<td>SWI</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>SWO to CSO-063</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DWO</td>
<td>1.3</td>
</tr>
<tr>
<td>No Storm (Avg. Dry Weather Flow)</td>
<td>SWI</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>SWO to CSO-063</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DWO</td>
<td>0</td>
</tr>
</tbody>
</table>

* Storm 60 is the only storm in the group of 121 synthetic storms representing a typical year where CSO-063 activates

* Storm 60 is a 1-year, 1-hour storm producing 0.94 inches of rainfall
CSO-063 Site – Before Construction
CSO-063 Site – During Construction
Liner Plates & Ribs in Soft Ground
Rock Bolts & Shotcrete in Shale
Placing Baffle Form
Pouring Baffle Concrete
Thank you!