Controlling CSO Utilizing Green Techniques in an Urban Environment

Fleet Avenue Green Infrastructure
Presentation Agenda

• NEORSD and Green Infrastructure Requirements
• City of Cleveland Coordination
• Alternative Evaluation and Design Selection
• Design
 – Hydrology and Hydraulics
 – Plan and Sections
 – Plant and Soil Selection
Northeast Ohio Regional Sewer District

- Created in 1972 by Court Order
- Servicing all or part of 62 member communities
- 1 million customers
- 90+ billion gallons wastewater treated each year
- Consent Decree - Project Clean Lake
- 81 square miles in combined sewer area
- 65 square miles are impervious
- 80% impervious
Consent Decree Requirements for Northeast Ohio’s CSO Volume Reductions

![Bar chart showing CSO volume reductions over time.]

- **Baseline (1970s):** 9
- **Early 2000s:** 6.2
- **Re-Baseline (2011):** 4.5
- **Target (2036):** 0.494
Appendix 3: Gray plus Green

District submitted Green Infrastructure Plan in December 2011
NEORSD APPENDIX 3 GREEN INFRASTRUCTURE

- University Circle Green Infrastructure Demonstration Project
- Green Ambassador - Slavic Village Demonstration Projects
- Fleet Avenue Green Infrastructure
- Green Ambassador - Urban Agriculture
- Green Ambassador - Fairhill/MLK
- East 140th Street Consolidation & Relief Sewer Project
- Woodland Hills Green Infrastructure
- Woodland/Central Green Infrastructure Project
- Opportunity Corridor Green Infrastructure Project
- Union/Buckeye Green Infrastructure
- Industrial Corridor Green Infrastructure
- D professionals Valley Green Infrastructure

Your Sewer District Keeping our Great Lake great.
City of Cleveland Coordination

- Complete and Green Streets Ordinance in effect as of January 2012
- Fleet Avenue Reconstruction project is the first complete and green street since the ordinance to be designed and constructed for the City
- Fleet Avenue was within a target area for CSO removal for NEORSD
- Actively coordinated with Slavic Village Development Corp and the City’s ward councilperson
Project Area Map
Green Infrastructure
Alternatives

We have... SAND!!
Green Infrastructure Alternatives

1. Bioretention along rights-of-way
2. Offloading to Waterway (Burke Brook)
3. Infiltration
Green Infrastructure Alternatives

1. Bioretention along rights-of-way
2. Offloading to Waterway (Burke Brook)
3. Infiltration
Green Infrastructure Alternatives

- Green Infrastructure
- Alternatives
Green Infrastructure Alternatives

1. Bioretention along rights-of-way
2. Offloading to Waterway (Burke Brook)
3. Infiltration
 - wells, trenches, basin(s)
Green Infrastructure
Selected Design

Final Selection: Infiltration Basin

- Reduce Utility Conflicts
- Available Land (Vacant)
- Overall Costs
- Cost per gallon of CSO removed
- No negative effect on schedule
- Controls typical year event, overflows to combined system
- Centralizing O&M
Project Costs and Schedule

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Project Costs</td>
<td>$9.1 million</td>
</tr>
<tr>
<td>GI Project Costs</td>
<td>$1.8 million</td>
</tr>
<tr>
<td>Design</td>
<td>Nov 2012 – Dec 2013</td>
</tr>
<tr>
<td>Construction</td>
<td>Jul 2014 – Jul 2016</td>
</tr>
<tr>
<td>GI Basin Construction</td>
<td>Apr 2015 – Nov 2015</td>
</tr>
</tbody>
</table>
Contributing Drainage Area

<table>
<thead>
<tr>
<th>Total Catchment Area</th>
<th>Area to GICM Feature</th>
<th>Imp. Area to GICM</th>
<th>% Imp. to GICM</th>
<th>Remaining Area to Exist Comb. Sewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.4 acres</td>
<td>15.2 acres</td>
<td>10.0 acres</td>
<td>66%</td>
<td>4.2 acres</td>
</tr>
<tr>
<td>% Area Captured:</td>
<td>78%</td>
<td></td>
<td></td>
<td>Annual CSO Reduction = 0.8 MG</td>
</tr>
<tr>
<td></td>
<td>Non-Building Scenario</td>
<td>All-Building Scenario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Runoff:</td>
<td>4.7 MG</td>
<td>6.7 MG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Stormwater Capture:</td>
<td>4.7 MG</td>
<td>6.6 MG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TY CSO Reduction:</td>
<td>0.8 MG</td>
<td>1.1 MG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of TY “Overflows” to Exist. Combined Sewer:</td>
<td>NONE</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-Building Scenario</td>
<td>All-Building Scenario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Runoff:</td>
<td>4.7 MG</td>
<td>6.7 MG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Stormwater Capture:</td>
<td>4.7 MG</td>
<td>6.6 MG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TY CSO Reduction:</td>
<td>0.8 MG</td>
<td>1.1 MG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of TY “Overflows” to Exist. Combined Sewer:</td>
<td>NONE</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Green Infrastructure Control Measure (GICM)
Goals

• Capture of Typical Year rainfall
• CSO Reduction
• Community Amenity

Conceptual Section - Elevation
DESIGN: Plan View
Sub-Surface Infiltration Units

18 Inch Inlet Risers (Typ.)
See Sheet 271.

Item 611 - 48" Conduit, Type A, 707.53, as per plan (Typ.)

G-2 Prop Manhole, No. 3, as per plan, See Sheet 272.

Your Sewer District Keeping our Great Lake great.
DESIGN: GICM Typical Year HGL

- Overflow Structure Elevation
- Planting Elevation/Plant Selection/Soil
- Stone/Pipe Storage Volume

Your Sewer District Keeping our Great Lake great.
Figure 3: Stormwater Control Measure
(DCIA Method: Non-Building Scenario)

Overflow Elevation = 688.50
Raised Planter = 686.5
Stone Channel = 684.5
DESIGN: Storm Pipe HGL

South Pipe Profile - Maximum HGL

Non-Building Scenario; 5 yr 6 hr 15 min Storm

GICM Overflow Elevation = 688.5
DESIGN: H/H Design Summary

- GICM Capture for Typical Year Storms
- 5-year Design Storm for Pipe Network
- Coordination with Landscape Architecture design for frequency of inundation

<table>
<thead>
<tr>
<th>GI Project Cost</th>
<th>$1.8 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Runoff:</td>
<td>4.7 MG</td>
</tr>
<tr>
<td>Annual Stormwater Capture:</td>
<td>4.7 MG $0.38/gal</td>
</tr>
<tr>
<td>TY CSO Reduction:</td>
<td>0.8 MG $2.25/gal</td>
</tr>
<tr>
<td>No. of TY “Overflows” to Exist. Combined Sewer:</td>
<td>NONE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Catchment Area</th>
<th>Area to GICM Feature</th>
<th>Imp. Area to GICM</th>
<th>% Imp. to GICM</th>
<th>Remaining Area to Exist Comb. Sewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.4 acres</td>
<td>15.2 acres</td>
<td>10.0 acres</td>
<td>66%</td>
<td>4.2 acres</td>
</tr>
<tr>
<td>% Area Captured:</td>
<td>78%</td>
<td></td>
<td></td>
<td>Annual CSO Reduction = 0.8 MG</td>
</tr>
</tbody>
</table>
GICM Functional Design

- Creating a Neighborhood Amenity with Multiple Benefits:
 - Reduction in Stormwater Runoff
 - Improving Livability
 - Reducing Heat Island Effect
 - Providing Habitat
 - Cultivating Public Education Opportunities
 - Increase in Groundwater Recharge
 - Reduction in Carbon Dioxide
GI Control Measure Aesthetic Design

- Create a lush, vibrant public space
- Create a natural feeling landscape within a structured framework
- Provide community access that promotes engagement
Why Plants and Soil?

- Short and Long term Infiltration
- Interception and Evapotranspiration
- Nutrient Removal
- Decreased hydrologic flow rates can increase TSS Sequestration
- Soil Mix: 30% Sand / 20% Organic / 50% Silt & Clay
Plant Selection and Landscape Design

Celebration Maple
Autumn Brilliance Serviceberry
Washington Hawthorn
Knock-Out Rose

Green Velvet Boxwood
Grey Owl Juniper
Karl Foerster Reed Grass
Day Lilies (Various Cultivars)

Raspberry Wine Bee Balm
Blue Vervain
Great Blue Lobelia
Iris (Various Cultivars)
Questions

Kim Colich, NEORSD
colichk@neorsd.org
216-881-6600

Mike Seluga, NEORSD
selugam@neorsd.org
216-881-6600

Christian Lynn, URS
christian.lynn@urs.com
216-622-2395

Your Sewer District Keeping our Great Lake great.