Quenching Central Ohio’s Thirst for Additional Water Supply: The Columbus Upground Reservoir Project

Richard C. Westerfield, P.E., Ph.D.
Ken Ricker, P.E.
Columbus, Ohio PWS

- Serves 1.1 M people in the city & 20+ surrounding communities
- 3 WTP’s (2 SW & 1 GW)
- Combined capacity of 240 mgd
- On stream reservoirs
 - HCWP
 - Hoover (23.7 Bgal)
 - Alum Creek (25.8 Bgal)
 - DRWP
 - O’Shaughnessy (4.8 Bgal)
 - Griggs (1.3 Bgal)
Project Justification

City of Columbus – existing supply sources did not have capacity to meet existing demand

- 1:50 Safe yield per WB 2000 = 130 mgd
- Usage rate in CY 2005 = 148 mgd
- Projected demand for year 2025 = 185.2 mgd
- Safe yield with South Well Field Expansion = 145 mgd

Del-Co Water Company- provide additional 8 mgd supply

- Additional supply and treatment capacity needed for future demands
- Planning new storage reservoir and plant

Increase in safe yield of 45 mgd needed
Project Goals

- Implement the plan in the water Beyond 2000 Report
- Adequate supply for Columbus & Del-Co Water Co. beyond 2020
 - Construct 3 upground reservoirs over time
 - Build on 2,500 acres of land secured by City
Growth and Development in Columbus

<table>
<thead>
<tr>
<th>Year</th>
<th>Avg. Raw Water Demands (mgd)*</th>
<th>Safe Yield (mgd)</th>
<th>Water Supply Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>1909</td>
<td>17.0</td>
<td>20</td>
<td>Griggs</td>
</tr>
<tr>
<td>1925</td>
<td>29.7</td>
<td>47.8</td>
<td>O’Shaughnessy</td>
</tr>
<tr>
<td>1955</td>
<td>58.3</td>
<td>100.2</td>
<td>Hoover Reservoir</td>
</tr>
<tr>
<td>1978</td>
<td>111.3</td>
<td>131.2</td>
<td>Alum Creek Reservoir</td>
</tr>
<tr>
<td>1983</td>
<td>125.1</td>
<td>150.2</td>
<td>South Well-Field</td>
</tr>
<tr>
<td>2014</td>
<td>168.9 (140 act)</td>
<td>171.1</td>
<td>Reservoir R2</td>
</tr>
<tr>
<td>2017</td>
<td>175.7</td>
<td>188.5</td>
<td>South Well-Field</td>
</tr>
<tr>
<td>2040**</td>
<td>(180)**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Assumes 6% loss through treatment plant. **Comprehensive Plan 2012
Facts

- 2500 acres of land purchased by the City of Columbus for the upground reservoirs from willing sellers
- Process started in 1993
- Total cost of land approximately $9,389,365.47

Columbus Share 24.5 mgd + Del-Co Share 4.5 mgd = Safe Yield of R2 29 mgd
What is an Upground Reservoir?

Typical Construction of Large Upland Reservoirs

Typical Construction of Smaller Upland Reservoirs

Section A-A Through Proposed Columbus Reservoir No. 1

Legend

- **Extraction**
- **Fill Placement**
Columbus Reservoir Site No. 2 Overview

- 9.3 billion gallon upground reservoir
- Clay & underlying saturated sand & gravel and Karst geology
- 4.6 mil cy of embankment (5 miles)
- Inboard Slope Protection
- 785-acre composite liner
 - 18” CCL; 40 mil fPP; geotextile & 18” soil cover
- Bid price $76.6 million

Design Phase Rendering
Key Project Team Members - Reservoir

• Investigation and Design
 • ms; S&ME (formerly BBC&M) and Moody Nolan

• Construction Management Team
 • URS; Stantec; H.R. Gray; Resource International; Prime

• Construction
 • Prime Contractor: Beaver Excavating Company
 • Subcontractors
 • Environmental Protection, Inc. (EPI)
 • Contract Dewatering Services
Projected Project Schedule

- Bids Obtained: 1st Qtr. 2011
- Substantial Completion: 3rd Qtr. 2013
- Initiated Construction: 2nd Qtr. 2011
- Reservoir Filled: May 2014
Construction Progress

November 1, 2011

Contractor’s Equipment
July 31, 2012

August 14, 2013

April 21, 2014

August 25, 2012
Raw Water Intake and Pump Station
(3Q 2011 – 3Q 2013)

- Kokosing Construction Company
- Bid Price $23.5 million
- 150’ Pneumatic Weir Gate & Intake
- Gripper Rake
- Traveling Water Screens (2)
- 40 mgd pumps (4)
Raw Water Pump Station
Weir and Pump Operational Photos, July 2013 – May 2014
Phase 1 Raw Water Pipeline (1Q 2012 – 3Q 2013)

- S.J. Louis Construction Company
- Bid Price $15 million
- 22,000 LF 72” pipe (AWWA C200 steel or PCCP)
- Links Pump Station to all 3 reservoir sites
- Dual functionality
 - Pump Station fills reservoir
 - Stored water released back to Scioto River
Phase 1 Raw Water Pipeline
Construction Progress June 2012 – November 2012
Reservoir Site Drainage

- Surface water to be diverted around proposed reservoir footprint
- New two-stage perimeter ditches to be constructed around each reservoir to intercept tile & surface drainage
Reservoir Inlet & Outlet Control

- 72-inch pipeline links pump station to all reservoirs
- Isolation valves direct flow in/out of each reservoir
- 30’ wide inlet structure – spillway with chute blocks
Outlet Structure

- Nine 3-foot-diameter drilled piers for uplift resistance
Outlet Structure

- Tower has draw-off gates at 6 levels
- 72-inch outlet
- 86’ service bridge
- Pool level and WQ profiler instruments
Construction Dewatering

- 14 perimeter wells into limestone bedrock

- Internal shallow wells into sand and gravel
 - Additional dewatering
 - Release of air trapped in sand and gravel under liner
Existing Wells Study

- 16 well complaints to date
- 5 well replacements to date
Groundwater Monitoring

- 14 shallow monitoring wells
- 14 deep monitoring wells
- 4 pipe backfill monitoring wells
- Transducers, data loggers, phone modems, solar panels
- 32 vibrating wire piezometers
 - Embankment
 - Liner
- Real time/on-line monitoring
Embankment Construction

- 30-45 feet high
- About 5 miles long
- 4.6 million cubic yards
- No stones larger than 4 inches
- On site lab for compaction testing
Blanket Drain Construction

- Used to control the seepage through the embankment
- Numerous sources of natural sand
- 128,000 tons of aggregate
- Gravel around perforated pipe
- Sand around gravel
- “Graded filter”
CCL Construction

- 18-inches thick
- Compacted cohesive soil
- 1.9 million cubic yards
- No stones larger than 2 inches
- Remove bumps, obtrusions, stones larger than ½ inch at surface
Linear Fabrication

- Fabrication shop in Marysville, OH
- Less field seams

- fPP comes in 25’ by 250’ rolls
- 125’ by 250’ sheets to site
Fabricated Panel Delivery
Liner Installation
Field Seaming

- Double thermal fusion welding
- Trial seams
- Air channel testing
- Destructive seam testing
Geotextile Covers

- 11-ounce non-woven geotextile
- Over geomembrane
- Cover soil cushioning
- Sand bag ballasts
Cover Soils

- Cohesive soil, or
- Granular soil, or
- Topsoil
- 18 inches thick
- 1.9 million cubic yards
- No stones larger than 2 inches
Affects of Weather on Liner Installation

- Runoff/sediments onto exposed liner
- Dust impacted field seam adhesion
- Worker heat stress protocols
Liner Whale

- July 2013
- Water/air trapped beneath liner near tie-in after storm
- Cut/vent & patch
Winterization Berm
- Temporary Berm
- Protect constructed CCL from freezing
- Helps keep geomembrane secured

Winterization Pool – June 2013
- 650 acres
- 12” min depth
- 1.3 Bgal
Questions?

www.columbusupgroundreservoirs.com

Ken Ricker, P.E.
ms consultants, inc.
Reservoir Excavation Embankment Construction
Sedimentation Analysis

- USGS Scioto River Sediment Loads
 - Mean – 50 ppm; Max – 750 ppm

- Annual Volume Loss in R2
 - .4 mg/yr @ 50 ppm; 5.6 mg/yr @ 750 ppm

- 1.3 Bgal Sediment Capacity in Conversation Pool (over 200 years)
Well Level Data – Start of Dewatering
QA/QC

- Embankment QAP
- Geomembrane QAP
- Compaction testing
- On-site lab for testing
Inboard Slope Protection

- Protects from wind/wave action
- T?
- H?
- QTY?
Field Seams

- Poor Field Seam
- Quality Field Seam
Northwest Portion of Site

• Borrow Area B-1
• 72-inch-diameter pipe

Northeast Portion of Site
Water Quality

• WQ monitored at Scioto River – fill during conductive periods

• Outlet structure has WQ Profiler & gates at variable levels